
Enetica API Specification
Client Code: Version 1.3
Date: 8th January, 2003

1

Tale of contents

1. Purpose of document 3

2. Overview 3

3. API Basic Usage 3

4. Encoding and Decoding Messages 5

5. Server Commands 6

2

Enetica API Spec

1. Purpose of document

This document is aimed at those who wish to develop a more in-depth understanding of the API
protocols for use with the Enetica wholesale system. It is designed primarily for those users who wish
to make extensive modifications to the supplied client code, or to those who want to create a new
client (or even API) from scratch. In the case of creating your own API, you will be mostly interested
in Section 5 of this document: Server Commands.

The explanations and examples in this document may make use of the Perl language – but there is
no limitation to the language you choose to use in connecting to the server.

2. Overview

The purpose of the Enetica API is to support communication between the reseller's web site (client)
and the Enetica registration system (server). This allows the client code to issue a full range of
commands to the server relating to domain searching (availability lookups, whois information),
domain registration and domain management.

The method of this client-server communication is SSL posting. This method provides a reasonable
degree of security (through encryption), whilst keeping the method simple and efficient (that is – the
client simply makes HTTP requests to the server). In addition to being SSL encrypted, the server
program is password protected – and can only be accessed with valid reseller username and
password. All commands essentially follow the same steps:

•Client wants to issue a command (eg, domain lookup)
•Client initialises data in the form of name/value pairs for sending to server (eg,
“action=lookup” “domain=testsearch.com.au”)
•Client posts data to server, and receives result data in form of name/value pairs
(eg, “status=success”) from server (in text format)
•Client parses result from server (placing them in a perl hash in the case of the
provided client code) and takes appropriate action

3.API Basic Usage (Perl)

3.1 Usage

The API provided is a perl module (filename: Enetica/AUClient.pm), which utilises object
orientation to abstract the server operations. A perl CGI-based driver program (filename:
register.cgi) is also provided to use the features of this module. To use the Perl API from a perl
CGI script, you first need to include the API with the perl “use” command. You then need to
instantiate the client object with the default connection values defined in the Enetica.conf file. In the
register.cgi script provided, these default values are stored in the global %ENETICA hash.

Example:

use Enetica::AUClient qw(:default);
$Client = new Enetica::AUClient(%ENETICA);
$Client->login;

3.2 Methods

The following methods are available to the Client object:

3

login, validate, send_cmd, company_lookup, trademark_lookup

These are described in greater detail below:

login: This method is used to initialise your login details for connecting to the server. Please note
that this operation does not actually connect to the server – but merely sets up a few variables.

Sample Usage:

$Client->login;

validate: This method is used for validating data input. It returns a hash result which contains an
error code and, in some cases, an error message. A hash reference (containing the data to be
validated) is passed to this method.

Sample Usage:

my %verify_results = $Client->validate(\%data);
unless ($verify_results{is_success}) {
 error_out($verify_results{error_msg});
 exit;
}

send_cmd: This is the most important method of the Client object, and is how individual commands
are send to the server (from domain lookups to actually registering a domain). The full list of
commands that can be issued are detailed in section 5.

Sample Usage:

%lookup_results = $Client->send_cmd("lookup",%data);

%results = $Client->send_cmd("register",%data);

...

company_lookup: This exists as a separate method of the Client object, though it is possible to
simply use the send_cmd directly with the server. It still exists for backward compatibility, but you
should use the “send_cmd” format instead.

Sample Usage:

my %abn_results = $Client->company_lookup(\%in);
if ($abn_results{status} ne "success") {
 error_out($abn_results{reason});
 exit;
}

Or, using send_cmd: $Client->send_cmd(“company_lookup”, \%hash)

trademark_lookup: As with the company_lookup method, this method is now defunct. You should
instead use the send_cmd method for performing a trademark lookup.

Sample Usage:

my %tm_results = $Client->trademark_lookup(\%in);
if ($tm_results{status} ne "success") {
 error_out($tm_results{reason});
 exit;
}

4

4.Encoding and Decoding Messages

Data is sent to and from the server as name/value pairs (via SSL post). Value fields are URL
encoded. The “Key” value in each table is the name of the variable being passed. For example, in
the case of domain lookups, data is SSL-posted to the enetica server in the following format:

action=lookup
domain=enetica.com.au

Data would then be returned in the format:

status=unavailable
response_code=200
reason=domain%20taken

If you are writing your own API, you will need to parse the result data yourself. If you are using the
provided client library, then the return values are automatically placed into a perl hash.

5

5.Server Commands

This section provides the specifications for the commands issued to the server.cgi. Each command
is separated into 2 components: Command details and Return data. If using the Perl API provided,
the commands in this section are sent via the “send_cmd” method.

Sample Usage:

 my %renew_results = $Client->send_cmd("check_renewtransfer",%domaindata);
 if ($renew_results{renewstatus} eq "success")
 {
 ### Do something with return results
 }
 else
 {
 error_out($renew_results{reason});
 exit;
 }

Usage of the send_cmd method is always of the form:

 %results = $Client->send_cmd(“command”, %arguments);

In the above example:

command: this is the action to be performed by the server.
%arguments: this is a hash of values (command arguments) sent to the server.
%results: this is a hash of return values sent by the server.

When reading through this section, the “Command details” table contains the value of the arguments
hash (with the “action” key corresponding to command), and the “Return data” table documents the
elements of the results hash (returned by the server).

5.1 Domain Lookup: lookup

Performs a lookup on the availability of a domain name. For .au domains, this feature should not be
required – as the source code is distributed with the “aulookup” utility (which is much faster, and
allows bulk searches).

Command details:
Key Type Required Value/Examples
action string Yes “lookup”
domain Valid domain string Yes xyz.com.au, xyz.com

Return data:
Key Type When Value/Examples
status string always “available”, “unavailable”
response_code number always 200
reason string if unavailable “reserved word or phrase”,

“domain taken”

6

5.2 ASIC/Company Verification: company_lookup

This action is used to determine if a provided ABN, ACN or state business number is valid by doing a
search on the ASIC site. If the company details are found, it returns the company name (and in the
case of a company with multiple trading names, returns these as well).

Please note that if the business number is not found that this does not necessarily mean the number
is invalid (for example, the ASIC website may have been down).

Command details:
Key Type Required Value/Examples
action string Yes “company_lookup”
abn number (ABN or ACN) No 39 087 987 988
brn_number string If no abn or

acn
BN999999

brn_state string If brn NSW
tradingascheck boolean no “1” - used only if provided both

abn and brn

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
abn_lookup_failed number If failed 1
reason string if failed “invalid number”
abn_acn_name string If found Eg: “ENETICA PTY LTD”
tradingname_list list (comma

delimited)
If abn and
alternative names
listed.

Note: Many companies don't have
additional trading names.

brn_name string If found

5.3 Trademark Verification: trademark_lookup

Similar to company lookup – but does a search on trademark number. Returns the trademark name
if found. This is only needed if domain applicants are basing their domain eligibility on a trademark.

Command details:
Key Type Required Value/Examples
action string Yes “trademark_lookup”
trademark_number number Yes 111111

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string if failed “invalid number”
name string If found Eg: “ALTRO”

7

5.4 Check Renew/Transfer status: check_renewtransfer

Used for .au domains to determine whether a renewal is coming from another registrar. If it is, then
order type of “transfer” is returned. If it isn't, then type is “renew”. If type is “renew”, then the domain
can only be renewed within 90 days of expiry. Transfers on the other hand can occur at any time.

Command details:
Key Type Required Value/Examples
action string Yes “check_renewtransfer”
domain string (valid domain) Yes xyz.com.au
password string If transfer Domain password, for example:

A012345

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string if failed “Missing Domain”,

“Domain not due for renewal”
renewstatus string always “success”, “failed”
ordertype string If status = “success” AND

domain is .au domain.
“renew” or “transfer”

days number If status = “success” AND
ordertype = “renew” AND
domain is .au.

Number of days until the domain
expires, eg: 42

If for example you try to renew a domain which is already under the Enetica system, but which isn't
due to expire for another 100 days, you would receive the following data:

status=failed
renewstatus=failed
reason=Domain not due for renewal. Please try again in 10 days
days=100

Alternativly, if you try issue a “check_renewtransfer” command when there is only 89 days until the
domain expires, then you would receive the following:

status=success
renewstatus=success
ordertype=renew
days=89

Both of the above cases assumed that the domain was already registered through Enetica. If the
domain is presently registered under another registrar, then in EITHER of the above cases, you
would receive the result (as long as you provided the correct password):

status=success
renewstatus=sucess
ordertype=transfer

Or, if the password provided was incorrect:

status=failed
renewstatus=failed
reason=Password required for domain transfer. Please visit auDA to retrieve your password.

8

5.5 Register Domain: register

This is the most important command you send to the server – and allows you to place a domain
registration order in the pending queue, which you can then view through the RWI (Reseller's Web
Interface). If you wish to process/register the domain straight away, you can then issue the “process”
command. If you do not send the process command from your client code, the application will
remain in your pending queue until you either process or cancel it from the RWI.

Command details:
Key Type Required Value/Examples
action string Yes “register”
domain string (comma delimited

list of valid domain)
Yes xyz.com.au,xyz2.com.au

ordertype string Yes “new”, “renew”, “transfer”, etc.
password string If transfer A012345
num_years number If gTLD Number of years for registration

(between 1 and 10 for gTLD's)
claim_type number If .au 1 to 11

1 = Exact match

2 = Abbreviation

3 = Acronym

4 = Refers to product

5 = Program we administer

6 = Refers to service

7 = Event we sponsor

8 = Activity we teach/train

9 = Venue we operate

10 = Name of profession
practiced by our employees

11 = Derived from real name
(for id.au only)

abn number (valid ACN or
ABN)

Sometimes* (see
footnote at end of
table)

ABN or can for company
registering .au domain

company string If .”abn” “Enetica Pty Ltd”
trademark_number number Sometimes* Only required if claim based on

trademark
trademark_name string Sometimes* Only required if claim based on

trademark
brn string Sometimes* Only required if claim based on

trading name
trading_name string Sometimes* Only required if claim based on

trading name

9

Key Type Required Value/Examples
business_type string If .au One of the following:

ACN

ABN

VIC BN

NSW BN

SA BN

NT BN

WA BN

TAS BN

ACT BN

QLD BN

OTHER
elig_type string If .au.

This field is
required for .au
domains to
determine the
eligibility criteria
for domain.

One of the following:

Company

Registered Business

Sole Trader

Trademark Owner

Pending TM Owner

Incorporated Association

Club

Non-profit Organisation

Charity

Trade Union

Industry Body

Commercial Statutory Body

Religious/Church Group

Political Party

Other

Note: Not all of the above
elig_types are allowed for all
domain types. Refer to .au
policy for more information

connection text/string Optional

(not for gTLD)

This field was previously used
for “close and substantial
connection” - but is now
essentially a “notes” field. It is
to be used when the registrant
needs to provide additional
information that may assist with
their application review.

url_forwarding boolean (0 or 1) No (default 0) Whether domain is going to use
URL forwarding.

mail_forwarding boolean (0 or 1) No (default 0) Whether to enable mail
forwarding (incurs cost for
reseller)

10

Key Type Required Value/Examples
spam_forwarding boolean (0 or 1) No (default 0).

Ignored if mail
forwarding = 0

Whether to enable spam
filtering on mail forwarding (if
enabled). Incurs fee.

Contact Details:

owner_first_name,
owner_last_name,
owner_org_name,
owner_address1,
owner_address2,
owner_city,
owner_postcode,
owner_state,
owner_country,
owner_phone,
owner_fax,
owner_email

strings Always (some
fields, such as fax
and address2 are
optional).

Self-explanatory

tech_same boolean No (default 0) Set to 1 to copy tech contact
details from owner details.

billing_same boolean No (default 0) Set to 1 to copy billing details
from owner details.

Tech Contact:

tech_first_name

...

strings If tech_same is
set to 0.

Self-explanatory

Billing Contact:

billing_first_name
...

strings If billing_same is
set to 0.

Self-explanatory

*Sometimes: These fields are never required for gTLD's, and are only sometimes required for .au applications. Please refer to the
.au allocation policy for more information on when this information is required.

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string if failed “Missing Domain”,
domain1,
domain2, ...

strings If status=success Each domain passed to server is
returned with unique id...

status1, status2,
...

strings If status = “success”. Separate status result for each
domain (eg, status2 gives result for
domain2)

reason1,
reason2,
reason3, ...

strimgs reasonX is provided for each
statusX that has value of
“failed”

Separate reason provided for each
failed domain.

id1, id2, id3, ... numbers For each success unique order for each domain:

id1=20997
Please note that with the return data from the “register” command, that you will need to save the “id” values returned by the server if
you wish to process them immediately (ie, from the client code). Each id field (ie, id1, id2, id3 ...) corresponds to each domain you
sent to the server – and is a unique order id that applies ONLY to that domain. For more information on processing orders (once
they have been pended by the “register” command), see section 5.6, below.

5.6 Process Registration: process

Submits a domain from the “pending” queue to the “progress” queue. If the domain application has
already been reviewed (and approved) by our staff, then domain is registered immediately and the
status changed to “processed”.

To process a previously pended application from the client code, you need to pass the unique order
id for each domain up to the server. These order id's are provided by the server when the order is
pended.

11

Command details:
Key Type Required Value/Examples
action string Yes “process”
ids list of order-id's (comma

delimited list of numbers)
Yes xyz.com.au

Return data:
Key Type When Value/Examples
statusXX, ... string always XX refers to order_id. A separate

status is returned for each order id
passed to the server.

reasonXX ... strings For Eg, “Order does not exist”
idXX ... numbers if success A separate return code is sent back for

each successfully processed order.
These values include:

0 – domain processed

300 – no matching order id

400 – not enough credits (order
remains in pending queue)

5.7 Log into domain management: login

Creates a session cookie for users to manage their domain. This cookie needs to be passed back up
to the server every time you issue a domain management command (along with domain name).

Command details:
Key Type Required Value/Examples
action string Yes “login”
domain string (valid domain) Yes xyz.com.au
password string Yes A05678

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string if failed Eg, “Authorisation Failed”
cookie string if success 5XcZgavqF8bhOZ9lP24TsJkiq

12

5.8 Log out of domain management: logout

Logs out of domain management (deletes the cookie). Requires cookie (ie, user must have
previously logged in).

Command details:
Key Type Required Value/Examples
action string Yes “logout”
domain string (valid domain) Yes xyz.com.au
id String (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string if failed Eg, “Invalid Cookie”

5.9 Retrieve Domain Info: get_domain_info

Retrieves domain information as name-value pairs. This is used primarily to get contact and
nameserver info (used for domain management). Requires cookie (ie, user must already be logged
in)

Command details:
Key Type Required Value/Examples
action string Yes “get_domain_info”
domain string (valid domain) Yes xyz.com.au
id String (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
info string if success Pre-formatted domain info
suggested_names string (Note: this

key may exist
multiple times)

if suggestions
found

* This is a list of suggested (and
available) domain names that the
owner might be interested in
registering (based on domain info).

13

5.10 Retrieve Nameserver Info: get_nameserver_info

Retrieves the nameserver details for the domain. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “get_domain_info”
domain string (valid domain) Yes xyz.com.au
id String (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
ns0, ns1, ... string if found ns0=ns1.enetica.com.au

ns1=ns2.enetica.com.au

...

5.11 Remove Nameservers: delete_nameservers

Drops nameservers for a domain. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “delete_nameservers”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq
ns Comma delimited list

(strings)
Yes ns=ns1.enetica.com.au

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
message string if success “Nameservers Deleted”

14

5.12 Add Nameservers: add_nameservers

Adds nameservers to a domain. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “add_nameservers”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq
ns Comma delimited list

(strings)
Yes ns=ns1.enetica.com.au

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
message string if success “Nameservers Created”

5.13 Retrieve Contact Info: get_contact_info

Retrieves contact information (admin, tech, billing) for a domain. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “get_contact_info”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
admin_id

admin_name

admin_email

admin_organisation

admin_address1

admin_address2

admin_city

admin_postcode

admin_state

admin_country

admin_phone

admin_fax

admin_selected

strings if success Contact details...

Note: contact info is provided for
admin, tech and billing (ie,
admin_name, tech_name,
billing_name, etc).

5.14 Add Domain Contact: add_contact

Adds contact details for a domain. Requires cookie.

Command details:

15

Key Type Required Value/Examples
action string Yes “add_contact”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq
type string Yes “admin”, “tech” or “billing”
admin_name

admin_email

admin_organisation

admin_address1

admin_address2

admin_city

admin_postcode

admin_state

admin_country

admin_phone

admin_fax

strings Yes Note: contact info is provided for
admin, tech and billing (ie,
admin_name, tech_name,
billing_name, etc).

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
contact_id strings if success New contact id created for contact (eg,

“KF9999”).

16

5.15 Remove Domain Contact: drop_contact

Drops a contact from a domain. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “drop_contact”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq
type string Yes “admin”, “tech” or “billing”
dropid string Yes Contact id to drop (eg KF9999).

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”

5.16 Retrieve URL Forwarding details: get_url_forwarding

If URL forwarding is enabled, this returns the details (URL, title, keywords). Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “get_url_forwarding”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
notfound Number (0, 1) If success 0, if url forwarding entry exists

1, if url entry is not found
dest_url string If notfound=0 Destination URL

Eg, http://www.enetica.com.au/
title string If notfound=0 Web page title
keywords string If notfound=0 Meta tags: Web page keywords
description string If notfound=0 Meta tags: Web page description

17

5.17 Update URL Forwarding: update_url_forwarding

Updates URL forwarding details. Please note that in order for URL or email forwarding to work, the
domain must be delegated to the Enetica nameservers. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “update_url_forwarding”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq
dest_url string Yes Destination URL

Eg, http://www.enetica.com.au/
title string Optional Web page title
keywords string Optional Meta tags: Web page keywords
description string Optional Meta tags: Web page description

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”,

“URL Forwarding not enabled”

5.18 Retrieve Email Forwarding details: get_email_forwarding

If email forwarding is enabled, this returns forwarding details. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “get_email_forwarding”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
mail Number (0, 1) If success 1 if mail forwarding is enabled

0 if it is not
spam string If success 1 if spam filtering is enabled

0 if it is not.
spam_address string If spam = 1 Eg, spam@hotmail.com
name1 ... name5 strings If mail = 1 and

value exists
Username portion of email address,
eg “fred”, “joe.bloggs”

address1 ... address5 strings If mail = 1 and
value exists

Email addresses that above users
forward to, eg
“support@enetica.com.au”

5.19 Update Email Forwarding: update_email_forwarding

Updates email forwarding details. Please note that in order for URL or email forwarding to work, the
domain must be delegated to the Enetica nameservers. Requires cookie.

Note: This will delete all previous email forwarding entries for this domain, befor adding new values.
This means that if you wish to simply add one address, that you need to re-send all details.

Command details:

18

Key Type Required Value/Examples
action string Yes “update_email_forwarding”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq
spam_address string If spam filtering is

enabled.
Eg, spam@hotmail.com

Field is ignored if spam
forwarding not enabled for
domain.

name1 ... name5 strings Yes (at least one
forwarding
account)

Username portion of email
address, eg “fred” or
“joe.bloggs”

address1 ... address5 strings Yes (ast least one
forwarding
address)

Email addresses that above
users forward to, eg
“support@enetica.com.au”

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”,

“Mail Forwarding not enabled”
mail boolean always 1 if enabled, 0 otherwise
spam boolean always 1 if enabled, 0 otherwise

19

5.20 Retrieve Domain Certificate: view_domain_cert

Retrieves formatted domain certificate for a domain registered through our system. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “view_domain_cert”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”
cert string if success Pre-formatted domain certificate

(HTML).

5.21 Modify Password: update_password

Allows a logged in user to change the password for their domain. Requires cookie.

Command details:
Key Type Required Value/Examples
action string Yes “update_password”
domain string (valid domain) Yes xyz.com.au
id string (valid cookie) Yes 5XcZgavqF8bhOZ9lP24TsJkiq
old_pass string Yes “A012345”
new_pass1 string Yes “secret123”
new_pass2 string Yes “secret123”

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”,

“Password mismatch”
message string If success “Password Updated”

20

5.22 Email password to domain owner: mail_pass

Sends the password for a domain to the registered domain contact.

Command details:
Key Type Required Value/Examples
action string Yes “mail_pass”
domain string (valid domain) Yes xyz.com.au

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Domain not under our management”
email string If success Email address to which the password

was send (the domain registrant's
email address)

5.23 Update IP: update_ip

Adds/updates an IP address for an already existing nameserver.

Command details:
Key Type Required Value/Examples
action string Yes “update_password”
domain string (valid domain) Yes xyz.com.au
ns string (comma delimited

list of ns:ip)
Yes List is comma delimited, and each

element in list contains nameserver-
colon-IP.

eg: ns1.xyz.com:124.124.124.124

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Cookie”

21

5.24 Domain Whois: whois_domain

Retrieves formatted domain info for an existing .au domain.

Command details:
Key Type Required Value/Examples
action string Yes “whois_domain”
domain string (valid domain) Yes xyz.com.au

Return data:
Key Type When Value/Examples
status string always “sucess”, “failed”
reason string If failed “Invalid Domain”
whois string if success Pre-formatted whois output (Text).

22

